Утепление стен в воздушные зазоры Утепление чердаков, мансард, каркасных домов Дома из ЛСТК Видео/Фото

Контакты

г. Ростов-на-Дону, Ростовская область, Краснодарский край:

тел.: 8-928-90-90-939 - Алексей;

e-mail: teplo@teplo61.ru

Статьи о Пеноизоле

И пенопласты бывают разными.

Все большее внимание специалистов и строителей привлекают карбамидные пенопласты, применение которых открывает широкие возможности для значительного снижения стоимости работ по теплоизоляции зданий и сооружений различного назначения. Такие пенопласты уже применялись у нас в стране и за рубежом под различными товарными названиями: в Англии – флотофаум, Японии – ипорка, Германии – аминотерм, Чехии – мофотерм, Швейцарии – изошаум, Дании – инсульспрей, Франции – изолеж, Канаде – инсулспрей, в Советском Союзе – мипора, Беларуси - Бипор.

За последнее 10-летие учеными и специалистами ЗАО «НТЦ МЕТТЭМ» создано новое поколение карбамидного пенопласта «МЕТТЭМПЛАСТ»® с улучшенными экологическими и физико-техническими свойствами, который все чаще используется при строительстве и ремонте жилых и общественных, в том числе многоэтажных зданий. Его применение в строительстве постоянно расширяется, особенно после издания СТО 00044807-001-2006 "Теплозащитные свойства ограждающих конструкций зданий", где «МЕТТЭМПЛАСТ»® занял свое полноправное законное место. 
ЗАО «НТЦ МЕТТЭМ» работает на рынке теплоизоляционных материалов уже 15 лет. За эти годы отработана технология изготовления пенопласта, создан целый ряд технологического оборудования (установки ГЖУ-1 и ГЖУ-Н1), а также, что самое главное, специально для пенопласта разработана новая полимерная смола холодного отверждения, выпускаемая под марками «ВПС-Г»® и «КАРБАМЕТ-Т»®.
В связи с ростом применения «МЕТТЭМПЛАСТ»® (далее по тексту – «пенопласт», но не путать с полистирольным) у потребителя появляется множество вопросов, касающихся эксплуатационных качеств теплоизоляционного материала.
Основными показателями, характеризующими теплоизоляционные материалы – пенопласты, являются коэффициент теплопроводности, кажущаяся плотность, коэффициент паропроница­емости, водопоглощение, температура эксплуатации, горючесть.
Применение пенопласта в жилищном и промышленном строительстве определяется:
во-первых, его способностью выполнять теплоизоляционные функции в течение длительного срока эксплуатации. Согласно заключению НИИСФ "время надежной работы пенопласта в качестве ненесущего среднего слоя трехслойных конструкций зданий и сооружений при любых условиях эксплуатации исследованного диапазона неограниченно";
во-вторых, его лучшими пожаробезопасными свойствами по сравнению с другими полимерными материалами (например, время горения составляет ноль (!) секунд;
в-третьих, его самой низкой стоимостью по сравнению со всеми существующими теплоизоляционными материалами.
По параметру "цена - качество" это самый оптимальный утеплитель.

1. Физико-механические свойства.

1.1. Коэффициент теплопроводности.В зависимости от эксплуатационных требований пенопласт может быть получен с различной кажущейся плотностью от 5 до 25 кг/м3. Наиболее широкое распространение получил блочный пенопласт марки М-20, имеющий среднюю плотность 18 кг/м3. С повышением кажущейся плотности количество закрытых пор увеличивается. Заливочный пенопласт через одни сутки после изготовления обладает повышенной влажностью, которая достигает 300% (по массе). Несмотря на высокую начальную технологическую влажность пенопласта, через 3-5 суток при наружной температуре плюс 20°С материал становится практически сухим и кажущаяся плотность совпадает с заданной. При переходе пенопласта из абсолютно сухого состояния к эксплуатационному (при ? - 80 %) кажущаяся плотность пенопласта увеличивается (ЛенЗНИИЭП. "Исследование свойств карбамидных пенопластов и их применение в строительстве").
На основании проведенных исследований (Временные указания по применению быстротвердеющей пены как теплоизоляции в суровых климатических условиях. Л., "Энергия"; И.С.Камеррер."Теплоизоляция в промышленности и строительстве". М., "Стройиздат"; И.Г.Романенко. "Физико-механические свойства пенистых пластмасс". М., "Стройиздат"; Справочник по производству теплоизоляционных и акустических материалов (под редакцией В.А. Китайцева). М., "Стройиздат") можно сделать вывод о незначительном влиянии температуры на коэффициент теплопроводности карбамидных пенопластов по сравнению с изменениями кажущейся плотности. Обобщение данных исследований позволяет установить корреляционную связь между коэффициентом теплопроводности и температурой в интервале от О°С до плюс 80°С и от О°С до минус 100°С. Увеличение температуры от О°С до плюс 80°С приводит к увеличению коэффициента теплопроводности до 70 %, а в интервале температур от 0 до минус 100°С изменение находится в пределах 40 %.
1.2. Теплоемкость – свойство материала поглощать тепло при повышении температуры. Удельная теплоемкость карбамидных пенопластов определяется твердой фазой материала, поэтому остается величиной постоянной независимо от кажущейся плотности пенопласта и при температуре 20°С составляет 1,39 Дж/(кг?°С).
1.3. Коэффициент паропроницаемости зависит от физических свойств пенопласта и определяет эксплуатационные качества строительных ограждающих конструкций.

2. Механические характеристики.

Прочность теплоизоляционных материалов является важным показателем, обеспечиваю­щим транспортабельность изделий и сохранность их на строительной площадке. Все карбамидные пенопласты имеют незначительную механическую прочность, которая зависит от кажущейся плотности и колеблется в пределах 0,01…0,05 МПа. С целью оптимизации плотности, транспортабельности, коэффициента теплопроводности, сохранности и цены строительные предприятия России применяют пенопласт средней плотностью 18 кг/м3 или менее плотный, но в упаковке. Известны способы, увеличивающие плотность пенопластов, но одновременно ухудшаются их теплоизоляционные свойства за счет увеличения кажущейся плотности. Так, при увеличении кажущейся плотности до 90 кг/м3 возрастает прочность пенопластов до 0,15 МПа, но при этом стоимость его увеличивается в 5-7 раз.
Все карбамидные пенопласты обладают значительной усадкой в период отверждения, что учитывается в технологическом процессе. На величину усадки влияют температура и время сушки. Как у отечественных, так и у зарубежных заливочных пенопластов усадка составляет 1,8…6,0% (М.Кухарж. "Мофотерм - пенообразный теплоизоляционный материал"). Техноло­гическая усадка в производственных условиях заканчивается через 3…7 суток и при попадании блоков пенопласта на строительную площадку дальнейшая усадка материала не происходит.

3. Адгезионные свойства.

Заливочные карбамидные пенопласты имеют удовлетворительную адгезию к материалам с шероховатой поверхностью, как, например, к гидроизоляционным рулонным материалам, необработанной поверхности бетона, армоцемента. К материалам с гладкой поверхностью, как, например, к слоистому пластику, стеклу, металлу, адгезия не наблюдается. Блочный пенопласт, наиболее часто применяемый для теплоизоляции зданий, соединяется с другими материалами с помощью различных клеев. При правильном подборе клеевого состава прочность шва выше прочности пенопласта. Поверхность отрыва всегда проходит по пенопласту. Температуры в диапазоне от минус 10°С до плюс 50°С существенно не влияют на прочность и отрыв заливочных и блочных карбамидных пенопластов.

4. Морозостойкость.

Карбамидные пенопласты относятся к морозостойким материалам. Отечественные пенопласты выдерживают более 50 циклов попеременного замораживания образцов с 80 % влажностью при температуре минус 19°С в течение 4-х часов и оттаивания на воздухе при температуре плюс 18°С в течение 2-х часов. При попеременном замораживании и оттаивании в воде в течение 2-х часов при температуре плюс 15°С образцы выдерживают 25 циклов испытаний (ЛенЗНИИЭП. "Исследование свойств карбамидных пенопластов и их применение в строительстве", Временные указания по применению быстротвердеющей пены как теплоизоляции в суровых климатических условиях. Л., "Энергия").
«МЕТТЭМПЛАСТ»® выдержал 1000 циклов попеременного замораживания при температуре минус 30оС в течение 3-х часов и оттаивания на воздухе при температуре плюс 40оС в течение 3-х часов.

5. Вибростойкость и шумопоглощение.

По данным Н. Баумана и др., образцы карбамидных пенопластов (аминотерм – торговое название блочного пенопласта в Германии) успешно выдерживают испытания вибрационной нагрузкой 180 кол./мин. в течение 120 часов. При этом масса образовавшейся пыли составляет 3%. В Московском ЦНИИ железнодорожного транспорта были проведены аналогичные испытания с пенопластом – заметных изменений в материале обнаружено не было.
На предприятии АО "Метровагонмаш" проведены вибрационные испытания образцов панелей обшивки автобуса с пенопластом (отчет №7716 от 25.07.97).
Ввиду отсутствия информации о вибронагруженности обшивки автобуса испытания проводились в соответствии с ГОСТ 16962.2-90 "Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам для изделий группы эксплуатации (передвижные наземные рельсовые установки, самоходные и несамоходные – в кузовах и под кузовами транспортных средств по ГОСТ 17516. 1-90)". Испытания проводились методом фиксированных частот (от 15 до 100 Гц), амплитудой 1,5 мм в течение 8…16 часов. Результаты испытаний: "Образцы панелей с приклеенным пенопластом вибрационные испытания выдержали в полном объеме без каких-либо разрушений".
Так, по данным Н. Баумана, звукопоглощение перфорированного изошаума (торговое название заливочного пенопласта в Швейцарии) с плотностью 10 кг/м3, толщиной 30 мм и с воздушной прослойкой 100 мм при частоте звука 400 Гц достигает 72%. Зависимость коэффициента поглощения от частоты отражена в таблице 1.
Таблица 1.

Зависимость коэффициента звукопоглощения пенопласта от толщины слоя и частоты колебаний

Толщина
слоя, мм

Коэффициент звукопоглощения при разных частотах, Гц

125

250

300

400

460

510

600

700

800

900

25

0,12

0,29

0,31

0,35

0,42

0,49

0,60

0,64

0,67

0,65

50

0,15

0,30

0,35

0,45

0,58

0,69

0,90

0,95

0,97

0,97

 

Испытания на шумопоглощение пенопласта проведены отделом акустики конструкторско-экспериментального производства АООТ «Автомобильный завод им. И.А. Лихачева». Частота испытаний – от 200 до 2400 Гц, толщина образцов пенопласта – 95 мм, 44 мм, 24 мм.
Вышеприведенные испытания показывают о широкой возможности использовать пенопласт в качестве шумопоглощающего материала в различных областях промышленности.

6. Горючесть.

Карбамидный пенопласт применяется при температурах от минус 50°С до плюс 120°С. Из всех применяемых в строительстве пенопластов только пенопласт относится к группе горючести Г2 (широко применяемый полистирольный пенопласт относится к группе горючести Г4). Карбамидный пенопласт (единственный из полимерных материалов) имеет продолжительность горения ноль секунд (!), т.е. распространения пламени по длине не имеется. На открытом пламени материал лишь обугливается и выделяет небольшое количество СО и СО2 (как при горении древесины).
При этом необходимо отметить, что из 4-х параметров горючести 2 соответствуют показателям для группы горючести Г1. К ним относятся: параметр "продолжительность самостоятельного горения" – он составил ноль секунд при испытаниях в испытательных центрах (лабораториях) Москвы, С.-Петербурга и Омска и параметр "степень повреждения по длине" – от 42% до 57% при нормативе для группы горючести Г1 не более 65%. Параметр "степень повреждения по массе" находится при всех испытаниях от 22% до 36% при нормативе для группы горючести Г2 не более 50%. Исходя из этих показателей можно сделать вывод, что если бы пенопласт был применен при строительстве сгоревшего здания УВД Самарской области, имевших место печальных последствий могло не быть, поэтому соответствующим организациям при реконструкции аналогичных зданий или при проведении противопожарных мероприятий на них можно с уверенностью использовать пенопласт.

7. Экология.

Не для кого не секрет, что основной причиной сдерживания широкого внедрения карбамидного пенопласта (который был изобретен в Германии еще в тридцатых годах, а в Советском Союзе появился в пятидесятых годах прошлого века) было большое выделение свободного формальдегида как при изготовлении, так и в процессе эксплуатации. Основной причиной этого являлось то, что для его изготовления применялись смолы «горячего отверждения», предназначенные для фанеры, ДСП, ДВП и т.д. Попытки отверждения этих смол при температурах 20..25оС приводили к тому, что процесс их полимеризации (с одновременным выделением формальдегида) длился месяцы, а то и годы.
Принято считать, что чем меньше свободного формальдегида в смоле, тем ниже токсичность материалов, полученных на ее основе. Содержание свободного формальдегида в смоле зависит от соотношения формалина к карбамиду и в определенных границах может регулироваться технологическими приемами ведения процесса синтеза. Однако, чем ниже это отношение в рецептуре смолы, тем трудней соблюсти баланс между высокими физико-техническими свойствами и низким содержанием свободного формальдегида в ней.
Поэтому прямые попытки снижения свободного формальдегида в смолах не приводили к положительным результатам, а соответственно для материалов, изготовленных на их основе и применяемых в строительной промышленности, проблема токсичности остается по-прежнему открытой до настоящего времени.
Проводимые на протяжении последних 15 лет научно-исследовательские работы в этом направлении показали, что положительный результат может быть достигнут только при комплексном подходе к изготовлению материалов на этапах их «создания»:
- при синтезе смолы;
- при подготовке готовой смолы к применению;
- при производстве самих материалов и изделий.
Причем, основная роль в производстве экологически безопасных материалов и изделий принадлежит именно этапу синтеза смолы.
Подтверждением этого вывода является реализованная на практике новая технология синтеза смол марок «ВПС-Г»® (ОАО «УХК», г.Н.Тагил) и «КАРБАМЕТ-Т»® (ОАО «Карболит», г.Орехово-Зуево МО), серийно выпускаемых в настоящее время и применяемых для производства пенопласта «МЕТТЭМПЛАСТ»®.
В основу разработанной технологии положены новые методы гомогенизации смолы при ее синтезе и рабочих растворов при производстве пенопласта. В смоле практически отсутствуют вещества, являющиеся источником выделения свободного формальдегида в процессе эксплуатации пенопласта.
Исследования показали, что у пенопласта, изготовленного из указанных смол, выделения свободного формальдегида в десятки и сотни (!) раз ниже, чем у пенопластов, изготовленных на основе смол марок КФ-МТ, КФ-МТ-15, КФ-Ж, крепитель М-3 и др., как при производстве, так и при эксплуатации.
Следует отметить, что при применении новых смол марок «ВПС-Г»® и «КАРБАМЕТ-Т»® значительно улучшается экология самого производства пенопласта, что существенно сокращает затраты на охрану труда.
Но чем больший авторитет завоевывает «МЕТТЭМПЛАСТ»® (бывший «пеноизол»), тем больше появляется его подделок. ЗАО «НТЦ МЕТТЭМ» даже было вынуждено сменить торговую марку из-за дискредитации материала. Обращаем внимание, что карбамидный пенопласт (ТУ 2254-001-33000727-2000) изготавливается только из смол марок «ВПС-Г» и «КАРБАМЕТ-Т», которые производятся только по заказу ЗАО «НТЦ МЕТТЭМ». Карбамидные пенопласты, изготовленные на основе других смол, никакого отношения к «МЕТТЭМПЛАСТу»® не имеют. И более того, применение других более дешевых смол приводит к потере экологической безопасности пенопластов и резкому сокращению сроков их эксплуатации.
Еще хочется отметить, что санитарно-гигиеническая безопасность пенопласта, изготовленного из вышеуказанных смол, подтверждена многочисленными заключениями Госкомитетом СЭН в различных регионах России.
Пенопласт также сертифицирован Госстандартом, Госстроем, прошел испытания на пожарную безопасность во ВНИИПО МВД и его филиалах в Санкт-Петербурге и Омске, в испытательном центре "Огнестойкость" ГУП ЦНИИСК им.В.А.Кучеренко, а также проверку теплофизических характеристик в НИИСФ, в НИИМосстроя и т.д.
Так, что и пенопласты бывают безопасными!

 

 


Главная Яндекс.Метрика